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Carrier-Mediated Transport Can Obey
Fractal Kinetics
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A mode} based on the fractal methodology is proposed for the ki-
netic study of carrier-mediated transport under heterogeneous con-
ditions, i.e., when the drug-carrier interaction occurs at an interface
with an effective dimensionality smaller than the embedding dimen-
sion of d = 2. A model equation is derived for the flux, based on a
similar approach for an analogous equation for enzyme kinetics. It is
shown that the total flux-solute concentration plots are curvilinear
when the fractal dimension is smaller than unity while they become
biexponential, with ascending and descending limbs, when the frac-
tal dimension D is in the range 1 < D < 2. Nonlinear Lineweaver-
Burk plots are obtained when this fractal kinetics approach is used.
Good fittings are obtained when the fractal model is applied to lit-
erature data previously analysed with a combined transport mech-
anism, revealing experimental systems that display a D value in the
range 1 < D < 2. It is suggested that transport studies should be
carried out at a wider working solute concentration range and var-
ious agitation and incubation conditions in order to derive definite
conclusions for the transport pathways.

KEY WORDS: carrier-mediated transport; fractal kinetics; fractal
dimension.

INTRODUCTION

Characterizing the permeation of drugs across biological
membranes has been of considerable interest in recent years
(1). Three classes of methods, namely, in vitro, in situ and in
vivo have been developed to study the basic mechanisms of
membrane transport in animals. In vitro and in situ tech-
niques are indispensable to give information on the kinetic

and mechanistic aspects of membrane transport which can-

not be gained in vivo.

Solutes cross the epithelial membranes by three distinct
mechanisms: passive diffusion (paracellular or transcellu-
lar), pinocytosis, and carrier mediated transport. Passive dif-
fusion refers to the movement of a solute along its concen-
tration gradient while carrier mediated transport is made
possible by membrane proteins reversibly binding specific
substrates.

Carrier mediated transport of drugs occurs in various
tissues in the body such as kidneys (tubular secretion), mu-
cosal cells in the gut (intestinal absorption and secretion),
liver (hepatobiliary excretion) and choroid plexus (removal
of drug from the cerebrospinal fluid).

Up to now, the analysis of carrier mediated transport
relies on classical reaction kinetics where the rate constants
do not have any time dependence. However, this type of
kinetics has been found to be unsatisfactory for heteroge-
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neous reactions when the reactants are spatially constrained
on the microscopic level by either walls, phase boundaries or
force fields (2). Thus, fractal reaction kinetics has been de-
veloped for the interpretation of results of experiments with
dimensional constraints (3). Fractal like reaction kinetics is
particularly suitable for reactions in or on media with inef-
ficient stirring conditions confined to low dimensions, be-
cause stirring breaks up the density fluctuations that are gen-
erated in such low-dimensional systems rendering the sys-
tem back to the classical behavior.

Conceptually, the interaction of drug with carrier, which
takes place at the interface of different phases, can be con-
sidered heterogeneous and spatially constrained because of
the restricted movement of the carrier on the complex bio-
logical membrane. In addition to this, the ‘‘unstirred water
layer’’ in the microenvironment of the gastrointestinal mem-
brane in conjunction with the gradation of pH and the di-
lemma of the ‘‘virtual pH’’ prevailing in this region, contrib-
ute to the inherent geometric heterogeneity of the drug-
carrier interaction. However, all previous studies dealing
with the effect of unstirred water layer resistance on the rate
of carrier mediated transport have been based on classical
kinetics (4-6). Accordingly, this study was undertaken to
draw attention and apply the fractal kinetics methodology to
the analysis of carrier-mediated transport data.

THEORY

Equation 1 1s used for the analysis of data in all studies
where a carrier mediated transport mechanism is assumed

J = J ..CKK,, + C) (1)

where J represents the total flux, J,,,, the maximum carrier
flux, K, is the Michaelis constant corresponding to the con-
centration required for half-maximal transport, and C the
solute concentration in the donor compartment. Equation 1
relies on the well-known Michaelis-Menten equation

v =V, ..CIK, + C) (2)

where v is the reaction rate, V,,, is the maximum reaction
rate, K, is the Michaelis constant, and C the solute concen-

. tration for the enzyme catalysed reaction:

ki ky
E+S = ES — Products 3)
k-

where E is the enzyme, S is the substrate, and ,, k_,, and
k, are rate coefficients.

Fractal Kinetics in Enzyme Catalysis and
Drug-Carrier Interaction

Based on the principle of fractal dimension and the con-
cepts of fractal kinetics developed by Mandelbrot (7) and
Kopelman (3), Quintela and Casado (8) introduced a modi-
fied Michaelis-Menten equation for the kinetic study of en-
zyme catalysis:

Vv o= Vmaxeff (C)Z—D/(Kmeff 4 C) (4)

where D is a dimensionless number, the fractal dimension,
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while V. °" and K, °" are defined in terms of the time-
dependent effective individual rate constants kS for the for-
mation and decomposition of the enzyme-substrate interme-
diate:

eff eff
ki k>

E+S8 = ES — Products (5)
ket

For D = 1, Equation 4 collapses to the classical Equation 2.

Building on the work of Kopelman (2,3) and Quintela
and Casado (8), considering the drug molecules as random
walkers and the carrier enzyme as ‘‘sitters’’ (traps), Figure
1, the effective rate coefficients (k,°™)_,, of the formation and
decomposition of the drug-carrier complex

iz
(k? )Car
Drugeuside cety + Carrier =
(keff)
—1/car
ff
(k; Jear
(Drug-Carrier)complex — Drugnside celt 6)

can be considered proportional to the “‘efficiency’’, dG/dr,
of the drug (walker):

k™). ~ dGld1 )

where G(r) is a microscopic quantity corresponding to the
exploration space of the distinct carrier molecules visited by
the drug, Figure 1. However, the quantity G is a function of
time (2):

G = G(1) ®)

From Equations 7 and 8 it can be concluded that the effective
rate constants are time-dependent coefficients. Specifically,
it has been shown (2) that for locally heterogeneous media
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G ~ td;/Z (9)

where d, is the ‘‘spectral dimension’” which is related to the
probability of the random walker (drug) to return to its origin
after time ¢ (3). As a matter of fact, for all fractal structures
d, < d (topological dimension). From Equation 9 the effi-
ciency, dG/dt, of the drug (walker) can be derived:

dGlde ~ 17" (10)

where h = O ford, > 2, and h = 1 — dJ2 for d;, < 2.
Combining Equations 7 and 10, one has

(keff)

0<h<l1

~ [_h

an

As has been pointed out by Mandelbrot (7) a system is
fractally structured if a property or quantity to be measured
is, within certain limits, a function of the scale applied. Ac-
cording to Quintela and Casado (8) the ‘‘measured’” k°f val-
ues are dependent on the scale or resolution applied in the
enzyme catalysed reaction. This is expressed mathemati-
cally with the typical equation of the autosimilarity law (8):

(12)

car

kcff — €lvD

where € is the scale of measurement. Based on the fact that
our detailed knowledge (on resolving power) of the enzyme
catalysed reaction increases as the working concentration
becomes smaller, Equation 12 was expressed in terms of
drug concentration (8):

kcff — A[(c)lAD (13)

where A, is a proportionality constant with the same dimen-
sions used for k< multiplied by (concentration)” ~!. Finally,
Equation 4 was derived (8) after appropriate combination of
Equations 2 and 13.

Applying identical syllogisms to the carrier mediated
transport, one can also argue that the resolving power when
studying the properties of drug-carrier interaction is also a

Fig. 1. (a) Schematic representation of the drug-carrier interaction using the fluid mosaic model of a cell membrane. The white circles
represent ionic and polar head groups of the phospholipid bilayer, while the wavy lines correspond to the hydrophobic fatty acid
chains. Solid bodies with a drug binding site on their surfaces represent the carrier-enzymes (peripheral proteins) attached to the
membrane. The solid bodies which traverse the bilayer are integral proteins. The black circles represent the drug. (b) Cross-section
of the membrane emphasizing the unstirred water layer overlying the transport sites.
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function of the scale applied. For example, if one was able to
monitor the energy levels of drug and drug-carrier complex
during the movement of drug from the outer to the inner
membrane surface, the recorded energy profile for active
transport will be dependent on the magnifying capability of
the device used for monitoring, Figure 2. In this Figure start-
ing from the unstructured, line (a) the lines b—d show exam-
ples with increasing structure. The information contained in
these lines can be associated with the intermediate stages of
an assumed translocation mechanism of transport, Figure 3.
Line (a) of Figure 2 corresponds to the formal Michaelis-
Menten kinetics and mirrors the energy levels of the two
extreme stages of active transport, designated as | and 4, in
Figure 3. However, Figure 3 shows only four, among the
numerous, stages of the drug transport mechanism across
the membrane. Thus, line (a) contains limited information,
i.e., the energy difference of the uphill transport of drug. The
irregular lines of Figure 2 contain richer information (in-
creasing from b to d) for the energy levels of the intermediate
stages of the complex’s transiocation (designated as 2 and 3)
and numerous others not shown in Figure 3. The minima and
maxima of the ragged lines (b—d) in Figure 2 correspond to
locally stable and unstable configurations of the drug-carrier
complex, respectively, during its translocation in the mem-
brane, Figure 3. The equivalence of the curve from one scale
to the next in Figure 2 (its self-similarity) is analogous to the
self-similarity of the curve in the enzyme catalysed reaction
(8). Thus, the “*measured’” (k°™)_,. will be a function of the
scale used and the autosimilarity law (Eq. 12) is also appli-
cable here. Plausibly, the lower the concentration used the
more accurately one maps the energy profile and in turn
measures the (k°™)_,, of the carrier mediated transport. Con-
sequently, an analogous equation to Equation 13 can be writ-
ten:

units)

(arbitrary

Energy

Distance (arbitrary units)

Fig. 2. Schematic representation of the potential energy levels
against the distance of the membrane for different resolving power in
the active transport mechanism. C, and C, represent concentrations
at the outer and inner membrane surfaces, respectively. See text for
the meaning of symbols a, b, ¢, and d. The inset shows that line d is
derived from line ¢ after magnification.
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Fig. 3. Schematic representation of drug movement in four steps
through membrane following a carrier mediated active transport
mechanism. The black circle represents the drug. The coupling en-
ergy-yielding process to form or cleave the drug carrier complex is
not shown.

(kM = ALC)' 7P (14)

car

Finally, a modified equation for carrier mediated transport,
which takes into account the fractal behavior of the system,
can be obtained by combining Equations 1 and 14:

J = JaxCTPUK LS + C) (15)

where J,,...°" and K, °"f are defined in terms of the effective
individual rate constants adhering to Equation 6. The simi-
larity of Equation 15 to Equation 4 is obvious, as the two
approaches are similar.

Inspection of Equation 15 reveals that for D = 1 Equa-
tion 15 collapses to Equation 1 and the effective parameters
become identical to the conventional Michaelian-type pa-
rameters J,,.. and K,,. This case of D = 1 is considered to
be the ‘““‘classical’’ approach, which assumes a homogeneous
embedding space, and homogeneous (well-stirred) reaction
conditions. Equation 15 departs from this view by assuming
that the dimensional excess of D (i.e., the difference of the
exponent value from D = 1) is a measure of the degree of the
complexity of the mechanism studied.

RESULTS AND DISCUSSION

Figure 4 shows the relation between the total flux and
the solute concentration in the donor compartment as a func-
tion of different values of the fractal dimension (0 < D < 1).
The deviations from the typical Michaelian curve (D = 1)
become larger as the values of D become much smaller than
the topological dimension, d = 1. For this lower fractal di-
mension (D < 1) the total flux increases without reaching a
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Fig. 4. Theoretical relationship between the kinetics of carrier me-
diated transport and variations in the fractal dimension D in the
range D < 1 (Eq. 15, using J,,,*™ = 50, and K,,°™ = 5). The values
of D from top to bottom are: 0.6, 0.7, 0.8, 0.9, 1.0. Note that each D
value corresponds to a different drug-carrier interaction.

plateau value as the solute concentration increases, Figure 4.
The curves of Figure 4 are curvilinear-like and approach
asymptotically straight lines with slopes which increase as
the deviation of D from unity also increases. This kinetic
behavior reveals that the mechanism of the reaction (Eq. 6)
becomes more complex involving more and more steps (Fig.
3) as the fractal dimension decreases in this low dimensional
medium. Therefore, the attainment of a maximum rate of
transport is unfeasible, Figure 4.

Figure 5 shows the relation between the total flux and
the solute concentration in the donor compartment as a func-
tion of different values of the fractal dimension (1 < D < 2).
The overall pattern of these curves demonstrate a unique
characteristic since the rate of transport rises at first rapidly,
traverses a maximum, and then descends slowly. The devi-
ations from the typical Michaelian curve (D = 1) become
larger as the values of D become much larger than the topo-
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Fig. 5. Theoretical relationship between the kinetics of carrier me-
diated transport and variations in the fractal dimension D in the
range 1 < D < 2 (Eq. 15 using J,,,*T = 50 and KT = 5). The
values of D from top to bottom are: 1.0, 1.1, 1.2, 1.3, 1.4, 1.5. Note
that each D value corresponds to a different drug-carrier interaction.
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logical dimension, d = 1. The values of the solute concen-
tration (designated as C,,,,), Which correspond to the max-
ima of the curves in Figure 5, can be calculated by equating
with zero the first derivative of Equation 15 and solving the
resulting equation:

Cmax = I(vmeﬁ(2 - D)/(D - 1) (16)

Figure S reveals that that the values of C,,,, decrease as the
deviation of D from unity increases. The corresponding
value for the true total maximum flux, J_,,,'°", can be ob-

tained by combining Equations 15 and 16:
Jmaxlot — Jmaxeff(z _ D)27D[(D _ 1)/Kmeff]D—l (17)

In the classical reaction system (Figs. 4 and 5, D = 1),
the steady-state is stable since the rate of arrival of drug
inside the cell, (Eq. 6), remains constant due to the random
distribution of the walker (drug) in the reaction space. In the
fractal-like reaction systems (curves with D < 1 in Figure 4
and curves with 1 < D < 2in Fig. 5), the distribution of drug
in the reaction space is more ordered (3) and the steady-state
conditions cannot be either achieved, Figure 4, or main-
tained Figure 5. In fact, the unattainability, Figure 4, and the
instability, Figure 5, of the steady-state conditions become
more apparent as the deviation of D from unity increases.

There are several systems reported in the literature (9)
that exhibit fractal dimensions in the range 1 < D < 2, as for
example a number of proteins, which are in the range be-
tween 1.2 and 1.8, entities not very different from the ones
examined in this study. Therefore, the potential carrier sur-
face itself may include fractal-like cavities. This geometric
disorder can be important when the drug moves in the frac-
tal-like domains of the transmembrane proteins. It has also
been supported (10) that carrier-mediated transport may be
achieved by diffusion of drug across tetra-, penta-, and hex-
americ channels lined by similar transmembrane segments,
Figure 1. The surface of the pores in these channels can have
fractal structure which could retain high specificity for drug
transport. In parallel, the fractal dimension is limited to the
range 1 < D < 2 for the fractal model of ion kinetics (11).
According to the authors (11) the fractal model is consistent
with the conformational dynamics of the channel proteins.
Disregarding the exact mechanism of carrier-mediated trans-
port one can argue that surface morphology irregularities
and inefficient stirring conditions could form a reaction me-
dium in which the dynamics taking place would exhibit a
fractal dimension less than 2.

The Fractal Approach and the Current Analysis of
Combined Mechanism

In actual practice non saturable curves similar to those
in Figure 4 are commonly encountered in in vitro drug trans-
port studies (see for example Ref. 12—-14). These curvilinear
curves are proposed as evidence in favor of a combined
passive and carrier mediated transport mechanism. In all
these studies the interpretation of the experimental results
relies on the general expression of combined carrier-
mediated and passive membrane transport of solutes (12—
14):

J = U,..ClK,, + O1+P,C (18)
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where P, is the passive membrane permeability constant. In
fact, Equation 18 consists of an active (the term in brackets)
and a passive component (P,C). The origin of this kind of
analysis goes back to the pioneering work of physiologists
who identified and quantified the active transfer electrogenic
component from the diffusive component during sugar ab-
sorption (15). Nevertheless, this is not the case in drug trans-
port studies where Equation 18 is used whenever the con-
centration dependence for solute transport is not a linear
function of the solute donor compartment concentration and
a plateau level for maximum transport is not reached. The
plots shown in Figure 4 demonstrate that a carrier mediated
transport mechanism can exhibit these features if fractal ki-
netics is encountered. This observation may also apply for
the ascending limbs of the curves in Figure 5.

The failure to show a saturable curve may merely indi-
cate fractal kinetics and not a combined mechanism of active
and passive transport. It is highly probable that an unstirred
water layer overlying the carrier sites, Figure 1, produces
concentration heterogeneity in this region. In such a case the
value of the fractal dimension, D, will be dependent on the
architecture and the agitation conditions of the different
kinds of in vitro preparations. It is reccommended, therefore,
that transport studies be carried out with different rates of
stirring to assess the rate of transport as a function of the
agitation conditions. Accordingly, concern is arising for
those techniques, e.g., Caco-2 cell culture model, and Uss-
ing chamber, where solutions are not stirred or agitated dur-
ing transport experiments.

Usually, the following criteria are applied to transport
studies to verify a carrier-mediated mechanism with or with-
out concurrent passive diffusion, i) the transport of a solute
is decreased by the addition of metabolic inhibitors or a
structural analogue for the carrier binding site and ii) the
temperature dependence in carrier mediated transport is
higher than in passive diffusion. If fractal kinetics is operat-
ing one should also expect the fulfillment of these criteria.
Obviously, the presence of a metabolic inhibitor in active
transport, causing a disordering of the energy yielding sys-
tem, will produce a diminution of the rate of drug transport
regardless of the type of kinetics, i.e., classical or fractal.
The decrease in the rate of drug transport at a lower tem-
perature and in the presence of a competing analogue should
be associated with the reduction of the efficiency (Equation
7) of the drug (walker). At lower temperature, apart from the
normally postulated reduction of the supplied energy, the
exploration space, G(#), of the distinct carrier molecules vis-
ited by the drug will be also reduced as a result of the de-
crease in the diffusivity of drug molecules. In the case of the
competing agent, the drug’s exploration space will remain
the same but the ‘‘successful visits’ by the walker (drug)
will be reduced since the carrier binding sites are occupied
by the competitor. The net result of these effects will be the
change in (ke“)ca, values (Eq. 14) and therefore an equation
analogous to Equation 15 can be written to describe the rate
of transport, J;, under inhibitory conditions assuming that
the fractal dimension of the system remains unaltered:

Ty = @ "C*TPIBKLT + C) (19)

where a and B are dimensionless, positive coefficients, de-
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noting the change of the true values for the parameters
Joax" and K, respectively.

In most cases, flux-solute concentration plots in the
presence of inhibitor seem to be linear. The classical expla-
nation for this linearity is routinely based on the assumption
of elimination of the saturable component of Equation 18.
However, Equation 19 can also exhibit linear-like behavior
in a low and narrow solute concentration range under the
inhibitory conditions since o and B can become much
smaller and larger than unity, respectively, Figure 6. Presum-
ably, the slight curvature anticipated on the basis of Equa-
tion 19 and exemplified in Figure 6 cannot be identified ex-
perimentally at this low level of fluxes and under conditions
of experimental error. However, whenever a nonlinear flux-
concentration curve in the presence of inhibitor is observed,
subtraction of the nonsaturable component is applied (14).
This kind of data treatment results in apparently linear
Lineweaver-Burk plots which are used for the estimation of
the Michaelian parameters in the presence of inhibitor. Con-
sequently, caution should be exercised when nonlinear or
apparently linear flux-solute concentration plots in the pres-
ence of inhibitors are observed.

Lineweaver-Burk Plots

By plotting the inverse of the flux as a function of the
inverse of the solute concentration, a linear graph is obtained
when data obeying the Michaelian formalism are used, Fig-
ure 7 (D = 1). The double reciprocal plot is extensively used
for calculating, from the slope and the intercept of the
straight line, the parameters J,,, and K,, of Equation 1.
However, this kind of plot is nonlinear for fractal-like drug-
carrier interactions. The two typical theoretical examples
shown in Figure 7 demonstrate that the curve at the vicinity
of the origin of the axes concaves downwards for D < 1 and
upwards for 1 < D < 2. The use of this plot can be helpful in
identifying the range of fractal dimension of the reaction
system.

300
250
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100

J (arbitrary units)

50

0 = T T 1 T 1
0 20 40 60 80 100

C (arbitrary units)
Fig. 6. Simulated curves in the absence (upper curve) and in the
presence (lower curve) of inhibitor to demonstrate the apparently
linear character of the flux-concentration curve under inhibitory

conditions. The upper curve was constructed from J = 50C*4/(5 +
C) while the lower curve from J = 25C'4/(25 + C).
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Fig. 7. Lineweaver-Burk plots for D = 1.3 (upper curve), D = 1

(middle curve), and D = 0.7 (lower curve). Equation 15 was used in
all cases with J,,,,°*T = 50 and K,°T = 5.

Application of the Fractal Approach to Literature Data

Indications for deviations from the classical Michaelian
rectangular hyperbola, mainly due to inefficient stirring,
have been previously reported in the literature (4-6). For
example, Yuasa et al. (6) studied the effect of the unstirred
water layer on the Michaelis constant and the maximum
transport velocity using a laminar flow model. However,
curves resembling those in Figs. 4 and 5 have not been re-
ported since in all studies the analysis was based on the
Michaelian formalism, i.e., Equation 2.

Data obtained from the literature for the carrier-
mediated transport of arginine (13) and benzoic acid (14)
which were previously analysed with Equation 18, are plot-
ted in Figures 8 and 9, respectively, along with the corre-
sponding fitted lines based on Equation 15. The estimates of
the parameters for arginine were J o = 8.05 (3.52) wmoV/
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Fig. 8. Concentration dependence of [*H]arginine fluxes in rabbit
jejunum taken from Ref. 13. The fitted line based on Equation 15 is
also shown.
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Fig. 9. Concentration dependence of ['*C]benzoic acid transport
across Caco-2 monolayers at 37°C taken from Ref. 14. The fitted line
based on Equation 15 is also shown.

hr - cm?, K, = 31.78 (13.78) mM, D = 1.33 (0.05) and for
benzoic acid J,,,,, ™ = 251.44 (133.31) nmol/min/mg protein,
K. = 22.59 (11.03) mM, D = 1.24 (0.09). The square of
the correlation coefficients were 0.9996 and 0.9991 for argi-
nine and benzoic acid data, respectively. Figures 8 and 9
demonstrate that fractal kinetics can describe the carrier-
mediated transport data of arginine an benzoic acid ade-
quately. The transport rate of benzoic acid under inhibitory
conditions (in the presence of 10 mM acetic acid) was also
analysed with Equation 15. The experimental data along
with the fitted line based on Equation 15 are shown in Figure
10. The value of D was adjusted to 1.24 (estimate found in
absence of acetic acid); the estimates of the parameters for
the benzoic acid transport in the presence of acetic acid were
Jonax"™ = 211.23 (35.15) nmol/min/mg protein K, ™ = 20.88
(5.30) mM, while the square of the correlation coefficient

S0 T

2+

0+

0 t t t f
0.0 4.0 8.0 12.0 16.0

Concentration, mM

2[;.0 24.1

Fig. 10. Concentration dependence of ['*Clbenzoic acid transport
across Caco-2 monolayers in the presence of 10 mM acetic acid at
37°C taken from Ref. 14. The fitted line based on Equation 15 with
D = 1.24, is aiso shown.
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was 0.995. Accordingly, the estimates for the parameters o
and 3 of Equation 19 are & = 211.23/251.44 = 0.84 and B =
20.88/22.59 = 0.92.

To the best of my knowledge a total flux-concentration
plot, with ascending and descending limbs as depicted in
Figure 5 for 1 < D < 2, has not been previously reported in
the literature. According to the current uptake theories, data
adhering to the curves of fractal-like kinetics of Figure 5 are
“‘negative’’ and unexplained and if they have been actually
observed they have not been published. However, it is very
well known (16) in the field of enzyme kinetics that high
concentrations of the substrate are self-inhibitory causing
reduction of the rate of the reaction. In addition, Shi et al.
(17) observed that biotin uptake by bovine brain microvessel
endothelial cell monolayers was reduced when concentra-
tions higher than 1000 pM were used. It was also noted in the
same article (17) that nonanoic acid and pantothenic acid
were significant inhibitors of biotin uptake, but only consis-
tently at longer incubation times. The time dependence of
inhibition is not in accord with classical kinetics but is com-
patible with fractal-like kinetics. Consequently, carrier-
mediated transport studies should be carried out using a va-
riety of incubation times in order to evaluate the parameter
estimates as a function of time. According to Kopelman
(2,3), a log-log plot of the parameter estimates versus time
gives a straight line with zero or negative slope when clas-
sical or fractal kinetics prevail, respectively.

CONCLUSIONS

In this study, the previous work of Quintela and Casado
(8) was extended from the reaction rate of an enzyme-
substrate system to the flow of a carrier-mediated drug
through a membrane. The same notions were used to set up
an equation with characteristic scaling behavior, relating the
drug flow to the solute concentration in the donor compart-
ment raised to a power (2 — D), where D is the “‘fractal”
dimension of the process involved. This formalism was sub-
sequently applied to two well known systems, arginine and
benzoic acid, and showed a satisfactory fitting of the perme-
ation rate. The present data, which in the past were analyzed
with sophisticated but, nevertheless, classical approaches,
show that the new fractal approach could also be a plausible
valid mechanism, with a value of the D exponent in the range
1 < D < 2. The approach developed provides a new picture
to understand carrier-mediated transport kinetics. Contrary
to previous reports (4-6), in the present study inefficient
stirring is not expressed explicitly in a mathematical form;
here, the approach developed allows all causes (and cer-
tainly inefficient stirring is one of them) of fractal kinetics to
be studied globally relying on Equation 15. The findings of
the present study reveal that if a fractal picture is valid, the
effect of temperature and inhibitors on transport rates pro-
vide only indications of transport mechanisms. Other exper-
imental manipulations such as, stirring or agitation condi-
tions, a wider working solute concentration range, and var-
ious incubation times should be used for detailed
determination of transport pathways.

It should be mentioned that fractal kinetics for carrier-
mediated transport can also operate under in vivo condi-
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tions. Depending on the specific characteristics of the sys-
tem under study and the hydrodynamics prevailing in the
reaction space, fractal or Euclidean dimensions can be found
in the different regions of the body. For example, the agita-
tion of the water layer adjacent to the gastrointestinal mem-
brane is considered to be less (4) than in in vitro prepara-
tions. Concern is arising therefore for the utility of the esti-
mates of the parameters J,, and K,, derived from
Equations 1, 15, and 18 in in vitro experiments. In other
words, the validity of the in vitro parameter estimates of the
carrier-mediated transport is questionable when applied to in
vivo conditions.

Finally, recent work (7,18) has demonstrated that ana-
tomical structures such as the circulatory system and the
lungs, may display fractal geometry. In parallel, time-
dependent processes exhibiting limit cycle oscillation have
been considered responsible for nonlinearity in pharmaco-
kinetics (19). Consequently, the analysis of time-dependent
processes operating in a fractal surrounding in the body may
require the application of nonlinear dynamics (20). The rich
dynamical phenomena in the time course of drug in the body
and pharmacodynamics can be better understood using tech-
niques being developed to understand dynamics in nonlinear
systems.
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